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Abstract
Exact nearest neighbor search is a computation-
ally intensive process, and even its simpler sib-
ling — vector retrieval — can be computation-
ally complex. This is exacerbated when retriev-
ing vectors which have high-dimension d rela-
tive to the number of vectors, N , in the database.
Exact nearest neighbor retrieval has been gener-
ally acknowledged to be a O(Nd) problem with
no sub-linear solutions. Attention has instead
shifted towards Approximate Nearest-Neighbor
(ANN) retrieval techniques, many of which have
sub-linear or even logarithmic time complexities.
However, if our intuition from binary search prob-
lems (e.g. d = 1 vector retrieval) carries, there
ought to be a way to retrieve an organized repre-
sentation of vectors without brute-forcing our way
to a solution. For low dimension (e.g. d = 2 or
d = 3 cases), kd-trees provide a O(d logN)
algorithm for retrieval. Unfortunately the algo-
rithm deteriorates rapidly to a O(dN) solution at
high dimensions, in practice. We propose a novel
algorithm for logarithmic Fast Exact Retrieval
for Nearest-neighbor lookup (FERN), inspired by
kd-trees. The algorithm achieves O(d logN)
look-up with 100% recall on 10 million d = 128
uniformly randomly generated vectors.

1. Introduction
Vector retrieval is pervasive, underlying search engines,
transformers, and open-book language models. At heart,
one of key attributes of computing systems lie in their ability
to retrieve knowledge. Sometimes, when this knowledge is
sufficiently broad — and a powerful enough retrieval archi-
tecture is built — these computing systems may even be so
good at retrieving relevant knowledge that they appear to
reason.

Given the power of knowledge retrieval for both commercial
and academic pursuits, significant energy has been devoted
towards effectively converting various types of data into
vectors, from words (Mikolov et al., 2013), images (Radford
et al., 2021), and audio(Radford et al., 2022) to documents,
sentences, and paragraphs (Dai et al., 2015).

In this work, we differentiate between look-up and search.
Look-up involves the retrieval of vectors guaranteed to be
contained in the database, while search involves the retrieval
of queries not necessarily contained in the database. Re-
trieving queries without exact matches may involve instead
retrieving that vector’s nearest neighbors. The definition
of nearest can be further disambiguated into Euclidean or
cosine similarity measures, among others. Note that under
the hood, a Euclidean distance-based nearest neighbor al-
gorithm can be easily adapted to be cosine similarity-based
simply by dividing each vector in the database by its mag-
nitude during insertion. During look-up, the query vector
is then also divided by magnitude. The resulting nearest
neighbors we obtain are also such by cosine similarity.

The scalable and effective look-up of large numbers of
high dimensional vectors is thus desired. While the vanilla
hashmap algorithm provides O(1) time complexity for
scalars, extending to O(d) for vectors in d-dimensional
space, this holds only when the cardinality of the hash func-
tion range is large relative to the number of elements, n.
When the number of elements becomes large relative to the
number of bins, b, finding the key within each bin becomes
a linear search problem. Since we expect each bin to have
n
b collisions, the time complexity for look-up is O(ndb ).

2. Related work
Prior work has taken 3 major directions to attain fast nearest
neighbor search. The approaches involve bucketing, divide
and conquer, or graph-based approaches. These techniques
are specifically tuned to work well for vectors in high di-
mensional space, which should be unsurprising since each
of these techniques is really just an extension of familiar 1-d
concepts: hashmaps, binary search, and breadth first search.
I believe there are key learnings that can be taken from both
exact and approximate retrieval and search settings, even
though we are interested in the exact variant. some new tech-
niques such as Certified Cosine certificates (Francis-Landau
& Van Durme, 2019) offer structure-agnostic tweaks to
speed up performance.

Bucketing Locality Sensitive Hashing (Indyk & Motwani,
1998) and k-means (Lloyd, 1982)(MacQueen, 1967), in-
cluding more recent variants like k-means++(Arthur & Vas-
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silvitskii, 2007), are two techniques that use bucketing to
group database vectors with their nearby peers. Since it
is hard to deal with queries that fall on the boundaries of
adjacent clusters, these algorithms are approximate search
algorithms. Both of these algorithms in practice take linear
time for sufficiently high dimensions and large numbers of
elements.

Divide and conquer kd-trees provide strong algorithms
for pruning, with new variants attempting to decrease con-
stant factors in the time complexity. (Zhang et al., 2012) A
recent work (Ram & Sinha, 2019) attempts to create parti-
tions based on random rotations of the dataset achieve the
same search accuracy guarantees as RPTree (Dasgupta &
Sinha, 2013) but with O(d log d+ log n) time complexity
for approximate search.

Graph-based approaches Recent graph-based ap-
proaches to search, such as Navigable Small World (NSW)
graphs (Malkov et al., 2014) and a later variant involving
layers of NSWs providing increasing granularity. Further
optimizations have been presented recently (Fu et al., 2019)
(Jayaram Subramanya et al., 2019).

3. FERN
Goal We aim to build an algorithm that satisfies two pri-
mary goals: we must be able to perform quick look-up on
vectors guaranteed to be contained in the database and we
must be able to quickly insert vectors. When designing the
algorithm, we assume our database contains n vectors, each
spanning d dimensional space. The i-th vector vi is defined
as follows

vi = [vi,1, vi,2, . . . , vi,d]
⊤

where vi ∼ U(−1, 1)

This process effectively generates vectors lying within a d
dimensional ”ball”-like shape of radius 1 in each direction.
The directions in which the vectors point are also evenly
distributed direction-wise.

In terms of time complexity, we define quick as anything tak-
ing logarithmic time — this means that lookup in a database
of ten billion vectors should only take seven times longer
than lookup in a database of a thousand vectors. That is
remarkable, because a naive linear search would take ten
million times longer, a nearly intractable time difference
at scale. Since a logarithmic lookup time and linear space
complexity is state of the art (SoTA), we believe a key con-
tribution of our work is an alternative data structure and
algorithm that achieves SoTA while simultaneously provid-
ing the capacity to be extended to logarithmic-time nearest
neighbor search, given its unique approach to dividing the

vectors by hyperplanes defined based on the vectors in the
database rather than measuring along a specific direction
like the traditional kd-trees process. Each node is an object
that stores a vector, pointers to the left and right children,
and a pointer to that node’s parent node. This results in
a binary tree with undirected edges. While we ultimately
implement retrieval using a queue structure, this bidirec-
tional edge only adds marginal complexity to the algorithm
and underlying data structure while enabling a backtracking-
based traversal method. The queue-based method emulates a
level-order traversal of candidate nodes while a stack-based
backtracking-based traversal method that full explores a
specific path before backtracking to explore each sibling
node that could not be pruned without potentially missing
the nearest neighbor, emulates a depth-first search.

Methodology We design a novel algorithm that is a vari-
ant of kd-trees, but has the capacity to perform better at
higher dimensions. Broadly, the structure is a binary tree.
Each node that has both left and right children defines a
hyperplane using the vectors of its left and right children as
support vectors.

The tree is constructed so that all vectors in each child’s
subtree are on the same side of the hyperplane as that child.
This allows us to perform vector look-up in logarithmic
time, provided that vectors are added to the database in a
sufficiently random manner. It is feasible, however, for an
adversarial insertion process to result in a heavily imbal-
anced tree and consequently worst-case linear look-up time.
While we don’t observe this as an issue in practice, we can
resolve the issue by implementing a slightly more compli-
cated variant of FERN - using a variant of the Red-Black
Tree technique (Guibas & Sedgewick, 1978) to guarantee
balanced trees, logarithmic depth, and thus logarithmic re-
trieval time complexity.

There are two key components to our algorithm: one method
for insertion (Algorithm 1) and another for lookup (Algo-
rithm 2).

The insertion algorithm (Algorithm 1) is fairly concise.
When inserting a vector into the tree, it is placed at the
root if the tree has not been initialized yet. Otherwise, if the
current node is missing a left or right child, we insert the
vector as a child node. If the node is a leaf node — that is,
missing both left and right children — then the left child is
always inserted first, before the right child.

During insertion, if a node has both left and right children,
then we set the current node instead to the child node that
is closest to the vector we are inserting. That is, if we form
a hyperplane from the set of points equidistant to both left
and right children, then we set the current node to the left
child if the vector to be inserted lies on the same side of the
hyperplane as the left child, otherwise we set the current
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Algorithm 1 FERN Insertion
1: function INSERT(vector)
2: if root not initialized then
3: root← VectorNode(null)
4: end if
5: node← root
6: while True do
7: if no left child then
8: set left node to vector
9: break

10: else if no right child then
11: set right node to vector
12: break
13: else if vector closer to left child then
14: node← node.left
15: else
16: node← node.right
17: end if
18: end while
19: end function

node to the right child.

The result of this insertion algorithm is that — for a balanced
binary tree — we get a maximum tree depth of O(log n)
where n is the number of elements in the database. Insertion
time per vector is thus O(log n) since we only visit one
node per depth level.

When looking up vectors from the data structure, we demon-
strate a method (Algorithm 2) that has a per-vector retrieval
time proportional to the maximum depth of the tree, since
we only look at one node per depth level. However, when
extended to search settings where the query is not known
to be contained in the database, retrieval time becomes pro-
portional to the number of elements in the tree. We can
no longer automatically prune any queries that lie close to
the hyperplane boundary since there is a possibility that the
nearest neighbor and query may lie on different sides of the
hyperplane.

Ostensibly, we would expect a non-negligible proportion
of vectors to be sufficiently far from the hyperplane to be
pruned. However, we notice that in practice, as the dimen-
sionality of the vectors increase, so too does the proportion
of vectors lying close to the boundary. This makes sense
intuitively since we are trying to project increasingly higher
dimensions of vectors onto a 1-d line (the line normal to
the hyperplane and passing through both support vectors).
During retrieval, we effectively perform the depth-first or
level-order search, as described previously. For a balanced
tree with strong boundaries (that is, most queries lie far away
from the hyperplane), per-vector time should be logarithmic
with respect to the number of elements already present in

the database (another word for our proposed data structure)
at insertion-time. However, it becomes linear otherwise.
We first define mip and mip vector, the distance to the
nearest neighbor found thus far and the vector representing
the nearest vector retrieved thus far. We then create a queue
and insert the root node.

Algorithm 2 FERN Lookup
1: function RETRIEVE(query)
2: mip, mip vector←∞, None
3: curr← None
4: queue← [self.root]
5: while queue not empty do
6: curr← oldest element in queue
7: update mip, mip vector if curr closer to query
8: if curr has both left and right children then
9: if query is closer to left child then

10: queue.append(curr.left)
11: if query close to boundary then
12: queue.append(curr.right)
13: end if
14: else
15: queue.append(curr.right)
16: if query close to boundary then
17: queue.append(curr.left)
18: end if
19: end if
20: else if curr has left child only then
21: queue.append(curr.left)
22: else if curr has right child only then
23: queue.append(curr.right)
24: end if
25: end while
26: return mip vector
27: end function

We then continuously pop a node from the head of the queue
until the queue is empty. Each time we pop a node, we check
whether its vector is closer to the query vector than the
current best candidate for nearest neighbor, mip vector,
which is a Euclidean distance mip away from the query. For
lookup, we are looking for an exact match, so we are seeking
an mip of 0. If the node has a left child only or a right child
only (the latter should never happen, but we have it as a
redundancy against exceptions) then we add that node to the
queue. Otherwise, if both children exist then we add to the
queue the node that shares the same side of the hyperplane
as the query. For lookup cases, we consider any query to be
sufficiently far from the boundary that only one child node
needs to be added to the queue per node. After all, whether
a query is close to the boundary is somewhat arbitrary and
the exact function definition depends on whether we are
performing lookup or search.

3



Fast Exact Retrieval for Nearest-neighbor Lookup (FERN)

For mapping applications, we can add an additional variable,
data (a byte array), to the Node class.

4. Experimental results
During experiments, we typically utilize d = 128 with the
same uniform distribution previously assumed. While this
may not be characteristic of all data distributions, we note
that our architecture is actually agnostic to the distribution
of the vectors being inserted. What matters (in terms of po-
tential effects on performance) is the order in which vectors
are inserted based on their relative positions.

To run our experiments, we use the Intel Xeon Platinum
8380 CPU (2.30 GHz), the same processor used for running
the popular ann-benchmark. for values of n we use 104,
5 ∗ 104, 105, 5 ∗ 105, and 106, 5 ∗ 106, 107. The last setting,
equivalent to look-up on 10 million vectors, has comparable
values of n and d to many of the Euclidean distance based
benchmarks in ann-benchmark. We notice a nearly per-
fect logarithmic time complexity, and at n = 107 we run
approximately 3000 retrievals/second without additional
optimizations.

5. Discussion
During our experiments, we noticed that system dynamics
can change drastically based on the dimensionality of the
vectors. The bulk of the time spent on this paper (80 or
so hours) was spent playing around with different ways of
defining the hyperplanes and various algorithms that would
balance or repair the tree to try to guarantee logarithmic
retrieval for large d and n. Unfortunately, while these algo-
rithms almost universally gave logarithmic time complexity
for 100% recall, the performance broke down drastically be-
yond d = 2 or d = 3. In particular, we note the importance
of having well-defined hyperplane boundaries.

Boundary sharpness We want to be able to maximize
pruning since we achieve O(log2 n) time complexity when
we prune 50% of the nodes in the database each time we
measure the distance between a node and the query). Indeed,
note that since a k-means based nearest neighbors search
allows us to prune up to n/k nodes per comparison, we
might wonder why 2-means search doesn’t achieve O(log n)
complexity. It’s because k-means has an O(n/k + k) time
complexity, the n/k term means that we would need to do
a linear number of searches regardless of the number of
clusters.

We observe empirically that the proportion of nodes in the
database that are visited increases sharply when there are
more nodes that are closer to the hyperplane than the support
vectors that define the plane. That is to say, during the
insertion process, there will be vectors that lie between

Figure 1. FERN lookup with vectors where d = 128 and look-up
time is averaged over 1000 vectors randomly sampled from the
database

a support vector and the hyperplane. Now when we’re
retrieving, the query may lie on one side of the hyperplane
but its nearest neighbor may be one of these ”in-between”
nodes on the other side of the hyperplane. This means
we now must be much more prudent when pruning which
decreases the proportion of vectors that are pruned and thus
increases the time complexity.

6. Conclusion
We are able to achieve our goal of creating a novel vector
database structure that achieves state of the art look-up time
complexity that is logarithmic in the number of vectors. The
algorithm presented here, FERN, maintains 100% recall
while performing lookup on vectors in high-dimensional
space (e.g. d = 128) with n varying from 104 to 107,
and presents a potential path towards a data structure and
algorithm that will allow for the first sub-linear exact nearest
neighbor retrieval process.

We believe that the exact process for attempting to perform
binary search on a vector database requires carefully defined
hyperplanes, which presents an area for further work. We
find the ”fixing” step of the Red-Black tree algorithm to be
particularly inspirational as a direction of future work.

We further also believe that an alternative for hyperplanes is
to use a graph based approach, similar to the approach taken
in many recent works (Malkov et al., 2014) (Fu et al., 2019)
(Jayaram Subramanya et al., 2019), since this could allow
us to more easily divide the database in a well-defined and
easy to update way. Overall we are excited by the potential
and hope to further develop this algorithm in pursuit of
sub-linear exact search.
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