
Prefix Tuning: Optimization of Large Natural Language Models

Grace Wang
Princeton University

gw17@princeton.edu

Nobline Yoo
Princeton University

nobliney@princeton.edu

Richard Zhu
Princeton University

ryzhu@princeton.edu

Abstract
Pretrained language models are models whose
weights have been optimized to learn general
language structure and syntax. Traditionally,
fine-tuning has been used to repurpose large
pretrained models for specific tasks and in-
volves adjusting all model-level parameters.
This means that researchers wanting to run a
model with n parameters on m separate tasks
have to store O(mn) parameters, which is a sig-
nificant memory cost across tasks. In addition,
even on an individual task level, the large num-
ber of optimizable parameters incurs significant
training costs—take for example GPT-2, which
has 345 million parameters—in both compute
time and memory.

In our work, we seek to reproduce the ACL
conference paper “Prefix-Tuning: Optimizing
Continuous Prompts for Generation.” In this
paper, the authors propose an alternative to fine-
tuning: prefix tuning. They propose a baseline
and experiment with several ablations to stress-
test the model in various environments—e.g.
contrasting low-data (few training examples)
and high-data (many training examples) perfor-
mance, and exploring performance differences
between continuous and discrete embeddings.

(Li and Liang, 2021) propose fixing all lan-
guage model parameters and optimizing only a
small set of “continuous task-specific vectors”
that are appended to the model. In contrast to
fine-tuning, this means that researchers running
a model with n frozen parameters on m tasks
with p << n optimizable parameters in the
prefix have only to store n+m ∗ p parameters.
(Li and Liang, 2021) show that with “only 0.1%
of the parameters, prefix-tuning obtains com-
parable performance in the full data setting.”
This extrapolates to storing n(1 + 0.001m), as
compared with nm, parameters.

By solving for when 1+ 0.001m = m, we can
estimate a threshold for the number of tasks m
for which the memory cost (number of parame-
ters to store) is the same for fine-tuning versus

prefix tuning. This threshold m is 1.001, which
means that for more than 1 task, prefix tuning
is more space-efficient.

Hence, prefix-tuning is worth exploring further,
and in our project, we (1) successfully repro-
duce the table-to-text generation baseline of
GPT-2 on the E2E dataset, and (2) propose four
additional ablation studies: (i) modifying the
prefix length, (ii) tuning GPT-2 with prefix and
infix in conjunction, (iii) analyzing a new pre-
fix initialization, and (iv) modifying the decode
mode at evaluation time to analyze the impact
of making changes at the testing stage on model
performance.

1 Introduction

Deep natural language generation models have be-
come increasingly effective, but come with large pa-
rameter spaces on the order of 175 billion (Brown
et al., 2020). Retraining these models from the
bottom-up for specific natural language tasks, such
as table-to-text generation or text summarization,
can be computationally expensive. Instead, re-
searchers have relied on pre-trained models that
are then tweaked to perform well on specific tasks;
this is known as fine-tuning (Devlin et al., 2018;
Radford et al.).

Given that these models have encoded high-level
language patterns, the process of transfer learning
is often quite effective given that the tasks reside in
similar domains.

However, as models becomes larger and the num-
ber of parameters increases, fine-tuning can be-
come computationally inhibitory. Prefix-tuning
allows us to cater the model to specific tasks by
appending a small vector to inputs and optimiz-
ing only on these small, fixed-length, continuous
vectors to specific tasks (Figure 1).

This allows researchers to train task-specific
models while only optimizing 0.1% of the total
model parameters, as the authors did in (Li and

Figure 1: Architectural difference between fine-tuning
and prefix-tuning. Figure from (Li and Liang, 2021)

Liang, 2021). Prefix-tuning GPT-2MEDIUM on
the table-to-text task on 0.1% of the total parameter
space, despite the smaller number of affected pa-
rameters, outperforms fine-tuning on the DART
metric by a measurable amount. Prefix tuning
achieves 1.5, 9.3, and 0.2 point improvements
on the BLEU score over fine-tuning on the E2E
(Novikova et al., 2017a), WebNLG (Gardent et al.,
2017), and DART datasets (Nan et al., 2021), re-
spectively (Li and Liang, 2021).

2 Related Work

It is important to provide some scholarly context for
our work in reproducing the baseline and proposing
new ablations for prefix tuning, so we discuss one
paper (Chen et al., 2022) that also revisited prefix
tuning. In (Chen et al., 2022), the authors conduct
an analytical review of various parameter-efficient
tuning methodologies.

Specifically focusing on prefix tuning, they con-
duct 20 runs of training and evaluation with 20
different random seeds. Using this methodology,
they find that prefix tuning is generally unstable,
because different orderings of training data cause
significant variance in the accuracy. Unlike (Li and
Liang, 2021), (Chen et al., 2022) concludes that
(1) prefix tuning consistently underperforms fine-
tuning in low, medium, and high-data settings and
that (2) previous papers came to different conclu-
sions because they were picking the best-accuracy
results over multiple runs, rather than evaluating
holistically over all runs.

Our paper is similar to (Chen et al., 2022) in
the spirit of revisiting prefix tuning, attempting to
reproduce the baseline, and suggesting new angles
from which to approach the original formulation.

E2E is a closed-domain (restaurant reviews)
table-to-text generation dataset that consists of
nearly 50,000 examples (Novikova et al., 2017a).

Figure 2 illustrates a data instance from E2E. (Shen
et al., 2019) provides the previous state of the art
for the E2E dataset across BLEU, NIST, METEOR
(MET), Rouge-L (R-L), and CIDEr metrics. How-
ever, (Li and Liang, 2021) exceeds performance
across all five metrics on the E2E dataset, and for
this paper we use their prefix-tuning metrics as the
new state of the art (SOTA).

3 Approach

The central task explored in this work is table-to-
text generation. This task involves taking input in
the form of a table and generating textual content
based on the table. We use the E2E dataset as our
testbed.

To evaluate our models we mainly compare 3
scores: METEOR, ROUGE-L, and CIDEr. ME-
TEOR represents the harmonic mean of precision
and recall. ROUGE-L measures the longest com-
mon subsequence between the model output and
gold output. CIDEr computes the cosine similarity
between target and output descriptions.

The main language model used throughout all
the experiments was GPT-2, which is essentially a
scaled up version of GPT. GPT-2 is a transformer
based language model from OpenAI with 1.5 bil-
lion parameters and 48 layers, trained on a cor-
pus of text from 8 million websites. As it is an
attention model, it focuses on the previous most
relevant words in order to predict the next token
in a sequence. GPT-2 also uses task conditioning,
which allows it to learn multiple tasks with the
same underlying model. Through task condition-
ing, GPT-2 is able to learn new tasks based on a
given instruction and with no provided examples,
which is called zero-shot learning.

In reproducing the baseline, our goal is to val-
idate the methodology and results of the original
authors. And in proposing four new ablations, we
aim to stress-test the original authors’ formulation.
Our first ablation is modifying the prefix length
with prefix tuning on the E2E dataset. In the orig-
inal paper, the authors perform experiments vary-
ing prefix length (0, 5, 10, 20, 40) on DART, a
much larger, open-domain, table-to-text generation
dataset. The central concern in this experiment is
finding the optimal prefix length (i.e. the thresh-
old prefix length after which accuracy declines).
Typically, a larger prefix length leads to more ex-
pressivity in the model, because there are more
optimizable parameters. However, there may be an

optimal threshold to the prefix length, because after
a certain point, the model overfits to the training
data and loses generalizability to unseen, testing
data.

In proposing our first new ablation, we seek
to explore how prefix length affects accuracy and
overfitting in a closed-domain dataset (E2E) that
is about three-fifths the size of DART. For exam-
ple, if we find that there is not a threshold prefix
length after which accuracy declines, then this may
suggest that in closed-domain datasets, overfitting
due to large prefix lengths is not as big of a con-
cern, because the training and testing set are in-
herently more similar in distribution (because they
are closed-domain) than in open-domain datasets.
On the other hand, if we find that there is a clear
threshold prefix length, then this may suggest that
in smaller datasets, overfitting due to large prefix
lengths is still a concern, because there is a higher
chance that the distributions between the training
and testing set are different.

In proposing our second ablation, we seek to
explore how employing both prefix and infix tuning
can help or harm accuracy. We hypothesize that
adding infix tuning in addition to prefix tuning will
allow the model to be more powerful due to the
increase in adjustable weights.

In proposing our third ablation, we seek to in-
vestigate the effect of initializing our prefix to a
known value. (Li and Liang, 2021) performs ba-
sic experimentation across a few prefix initializa-
tions, among which “active,” “elephant,” and “table-
to-text:” achieve the highest BLEU scores. They
conclude that initializing with task-relevant words
achieves higher performance. We investigate the
effect of adding numbers to the prefix initialization,
which has not been attempted previously, in order
to search for an initialization that allows us to reach
a lower local optimum more quickly. This ablation
allows us to outperform (Li and Liang, 2021) on
the table-to-text task (using the E2E training set)
across METEOR and CIDEr metrics, so we set
forth a new SOTA.

In proposing our fourth ablation, we explore
how modifications to the original formulation at
evaluation time might improve model performance,
specifically testing sampling as an alternative de-
coding approach to beam search.

Figure 2: Example data from E2E dataset. Figure from
(Novikova et al., 2017b)

Figure 3: GPT architecture. Figure from (Radford et al.,
2018)

3.1 Baseline

We emulate the baseline results using training only
the prefix and also training only the infix. We
achieve the results shown in Table 1 and 2. We
achieve results on par with those of (Li and Liang,
2021). Our meteor score is 20 basis points (1 ba-
sis point or bp is equivalent to 0.01%) higher, our
Rouge-L score is 90 bps lower, and our CIDEr
score is 600 bps higher.

The baseline using prefix only was trained with
the same model and hyperparameters as those
used in (Li and Liang, 2021). We used a GPT-
2MEDIUM model for table-to-text generation on
the E2E dataset, 10 epochs, batch size 5, learning
rate 5 · 10−5, and prefix length 10. Training and
evaluation took a combined 4.45 hours on a Tesla
T4 GPU unit.

The baseline using infix only was trained 5

E2E (prefix-only)

MET R-L CIDEr
Li and Liang 2021 46.3 72.1 2.46

Ours 46.5 71.2 2.52

Table 1: Baseline results with prefix only

E2E (infix-only)

MET R-L CIDEr
Li and Liang 2021 45.8 69.9 2.40

Ours 46.0 70.5 2.41

Table 2: Baseline results with infix only

E2E (prefix vs infix baseline)

MET R-L CIDEr
Prefix-only 46.0 71.0 2.455
Infix-only 46.0 70.5 2.41

Table 3: Our baseline prefix only vs infix only model -
both trained with prefix length of 5

epochs, learning rate 0.00008, and prefix length
5. The first row in Table 2 shows the original au-
thor’s results training with infix only with prefix
length of 10. Our results are comparable and even
exceed their infix model despite using a smaller
prefix length. Table 3 compares the results of our
prefix-only versus infix-only model, both trained
with a prefix length of 5. Similar to the original au-
thors, we conclude that prefix tuning outperformms
infix tuning, because the prefix is able to affect the
activations of both the input and output, while the
infix only affects that of the output.

We use beam search for decoding and a single
prefix prepended to the input/infix appended to the
x in the input, with random initialization of the
prefix/infix, respectively.

Additional detail on the process for achieving
baseline metrics on par with those provided in the
paper are shown below.

For the first two weeks, we devoted our time to
getting the baseline running. We created a group
Google account, where we purchased Google Co-
lab Pro, so that all three group members could
access and track progress on the Colab notebooks.

Initially, we cloned the original authors’ github
repository into our shared account Drive. We cre-
ated missing files, and ran our model with the pa-
rameters suggested. Unfortunately, at evaluation
time, the results returned were the same regardless
of the training hyperparameters we used. So, we
contacted the original author, after which we re-
ceived a link to her CodaLab repository. Based on
our exploration of the CodaLab files, we adjusted

Prefix Length Ablation on E2E

Prefix Length MET R-L CIDEr
5 46.0 71.0 2.455
10 46.0 71.4 2.463
15 46.0 71.6 2.456
20 46.1 71.4 2.473
25 45.9 70.8 2.459
30 46.1 71.2 2.460

Table 4: Results from the prefix length modification
ablation study

our local repository to include the CodaLab python
scripts and DART. We were finally able to replicate
close to the original baseline results.

3.2 Ablation 1: Modify Prefix Length with
Full Prefix-Tuning on E2E

In the baseline study, the authors use a prefix length
of 10. The authors also perform experiments vary-
ing prefix length (0, 5, 10, 20, 40) on the DART
dataset. On the E2E dataset, the authors perform
experiments varying prefix length with only dis-
crete embeddings of real words, rather than with
“virtual tokens” which are continuous embeddings
(as proposed in prefix tuning methodology).

In our ablation study, we experiment with vary-
ing prefix lengths using prefix tuning (continuous
embeddings) and the E2E dataset, which is unique
from the two ablations that the original authors
proposed. Specifically, we seek to explore how
prefix length affects accuracy and overfitting in a
closed-domain dataset (E2E) that is smaller than
DART.

We use prefix lengths of 5, 10, 15, 20, 25, and
30. A shorter prefix length may be faster to train
but corresponds to fewer trainable parameters and
is thus limited in the amount of expressiveness. A
longer prefix length may take longer to train but
has more parameters to train, which may result
in more expressivity. Our results paper find that
with E2E, substantial expressiveness can be cap-
tured even with just a short prefix of length 5. We
find that accuracy peaks around prefix length of
15 or 20, depending on the metric being evaluated
(ROUGE-L in the former, METEOR and CIDEr in
the latter). Cutting the original prefix length in half
to five slightly reduces performance for Rouge L
and CIDEr but maintains the same METEOR score.

https://github.com/XiangLi1999/PrefixTuning
https://github.com/XiangLi1999/PrefixTuning

3.3 Ablation 2: Using Prefix and Infix in
Conjunction

In the original paper, the authors test two place-
ments of the trainable activation: (1) [trainable
activate (prefix);x; y] (Figure 4) and (2) [x; train-
able activation (infix); y] (Figure 5). They find that
infix-tuning underperforms prefix-tuning, because
the infix only affects the activation of y, whereas
the prefix affects the activations of both x and y.

Figure 4: Prefix-only architecture. Figure from (Li and
Liang, 2021)

Figure 5: Infix-only architecture. Figure from (Li and
Liang, 2021)

We decided to attach both prefix and infix vec-
tors to our inputs simultaneously to aid in p*-
tuning. We expected the additional parameters
and augmented positional reasoning capacity of
prompts to improve table-to-text summary perfor-
mance, though also anticipated increased training
time and worsened low-data behaviour during train-
ing. The low-data environment is largely a cause
of the difference in size between training examples
and prefix-tuning parameters - the E2E dataset only
contains 50K examples, but is used to train a lan-
guage model that has 500K trainable parameters
even when prefix-tuning is applied. We expected
potential overfitting which could be reduced by
applying dropout during training.

In our study, we test the effect of applying both
prefix and infix-tuning: [prefix;x; infix; y]. As
shown in Figure 5, using prefix and infix in con-
junction significantly underperformed prefix-only
and infix-only environments (approximately and
two to four times worse, compared to prefix-only
and infix-only results).

E2E (prefix + infix)

PL LR # Epochs MET R-L CIDEr
5 8 · 10−5 5 15.2 42.5 0.59

15 1 · 10−4 8 26.4 50.8 0.932

Table 5: Results from training prefix and infix, where
LR is the learning rate, PL is the prefix length

3.4 Ablation 3: Modifying Prefix Initialization

We attempt to modify the prefix initialization, set-
ting the prefix equal to “table2text” and observe
the effect of introducing numerical characters. (Li
and Liang, 2021) found that initialization to task-
adjacent strings is helpful in low-data environ-
ments, such as the one experienced in tuning a large
transformer-based autoregressive neural language
model (eg. GPT-2) with the E2E dataset.

The results of this study are shown in Table 6.

E2E (prefix initialization)

PI BLEU NIST MET R-L CIDEr
”table2text” 69.8 8.82 48.9 76.1 2.64

”table-to-text:” 70.3 8.82 46.3 72.1 2.46

Table 6: Results from training with novel prefix ini-
tialization “table2text”, where PI stands for the prefix
initialization

An example of an input from the test set, and
the respective gold output and model prediction are
shown in Figure 6.

We notice that the model prediction captures the
essence of the sample input - a table containing
information on a restaurant review of Blue Spice.
Using prefix-tuning, we are able to achieve a gram-
matical prediction that also contains all features
described in the input table.

3.5 Ablation 4: Modify Decode Mode

The decode mode used for the baseline model was
beam search. Beam search is proposed as a bet-
ter alternative to exhaustive search and greedy de-
coding. Exhaustive search is computationally ex-
pensive since it involves calculating all possible
sequences and greedy decoding is suboptimal since
it only considers the single most probable token at
each step. Instead, beam search reduces the scope
of consideration to the top k most likely sequences
where k refers to the size of the candidate window,

Sample input (test set):
name : Blue Spice | Type : pub | food : Chinese |

area : city centre | family friendly : no | near :
Rainbow Vegetarian Café < |endoftext| >

Gold output:
(1) Blue Spice, located near Rainbow Vegetarian

Café in the city centre, is a pub that also sells
Chinese food. Children should not visit.

(2) A pub named Blue Spice is located in the city
centre. It is for adults and is close to Rainbow

Vegetarian Café. They offer Chinese food.
(3) The Blue Spice is a pub that also serves

Chinese food, it’s located in the city center. The
pub isn’t very family friendly, but the proximity to

the Rainbow Vegetarian Café makes up for it.
(4) Near Rainbow Vegetarian Café Blue Spice pub
Chinese in city centre family friendly no. There is
a pub Blue Spice located in the centre of the city

that provides Chinese food. It is not family
friendly and is located near Rainbow Vegetarian
Café. located in the city center. right next to the

Rainbow Vegetarian Café, the pub, Blue Spice, has
wonderful Chinese food. The Blue Spice is perfect
for date night, but i wouldn’t recommend bringing

your family there.
(5) Blue Spice is a pub located in the city centre. It
has Chinese food and is not family friendly and is

located near Rainbow Vegetarian Café.
Model prediction:

(1) Blue Spice is a pub that provides Chinese food
It is located in the city centre. It is near Rainbow

Vegetarian Café.

Figure 6: Sample input/gold/prediction tuple in the test
set, evaluated on the prefix initialization ablation

or beam. It presents an efficiency improvement
over exhaustive search by pruning the paths that
are not part of the top k.

An alternative decoding approach that is
commonly used in lieu of beam search is nucleus
sampling. Nucleus sampling is similar to Top-K
sampling, which eliminates less probable words
from consideration by focusing on only the
top k most probable tokens. Nucleus sampling
addresses a limitation of Top-K sampling, namely
that the value of k needs to be determined
beforehand. Instead, nucleus sampling is more
flexible/dynamic: it considers the minimum set
of words whose sum crosses a certain probability
threshold and eliminates all other tokens from
consideration. This approach allows the model to

Gold output:
(1) A coffee shop in the city centre area called

Blue Spice.
(2) There is a coffee shop named Cocum located
near Burger King. This coffee shop has a high

customer rating.
Model output:

(1) Blue Spice is a coffee shop in the city centre.
(2) Cocum is a coffee shop located near Burger

King. It has a high customer rating.

Figure 7: Results from the nucleus sampling ablation
study

have the flexibility between focusing on a small
set of tokens for which it has high confidence or
enlarging the candidate set when there is higher
uncertainty. The nucleus sampling formula is

∑
x∈V (p)

P (x|x1:i−1) ≥ p. (1)

In this study, we performed nucleus sampling
and returned five results for text generation and
selected the first result as the final output. The
results are shown in 7; evidently, nucleus sampling
produces comparable results to beam search but
does not present an improvement.

E2E (nucleus-sampling)

MET R-L CIDEr
Ours 41.7 63.5 1.86

Table 7: Results from the nucleus sampling ablation
study

We also include sample output of our model
in comparison with the gold output in Figure 7.
The results show that our model is able to capture
much of the meaning presented in the target output
although it expresses it with different words.

4 Discussion

In summary, we first replicated the baseline prefix-
tuning model in the (Li and Liang, 2021) paper.
This ended up occupying the majority of the re-
search period due to the high ramp up required to
understand the codebase and the code execution.
The originally downloaded codebase from the pa-
per’s github repository was incomplete (missing

evaluation data) and we eventually found the pa-
per’s Codalab repository, which we used for the
remainder of the project steps.

After replicating the baseline results, we then
augmented the model with four ablation studies.
In the first, we tried six different prefix lengths.
Results remained largely similar but we achieved
slight improvement over the paper’s baseline re-
sults with prefix length 20 (according to MET
and CIDEr metrics). Throughout our paper, MET
stands for METEOR anad R-L stands for the
ROUGE-L metric.

In our first ablation, we sought to explore how
prefix length affects accuracy and overfitting in a
closed-domain dataset (E2E) that is smaller than
the open-domain DART. We found that there is
a threshold prefix length after which accuracy de-
clines (15 or 20), so this may suggest that in smaller
datasets, overfitting due to large prefix lengths is
still a concern, because there is a higher chance that
the distributions between the training and testing
set are different.

In the second ablation study, we added an infix
in addition to the prefix. This led to worse perfor-
mance. We surmised that this could be because
we were running the same number of epochs with
now twice the number of optimizable parameters.
To test this theory, we re-ran the mode with more
epochs (8 instead of 5), and we notice in the second
row of Table 5 that the accuracies increase across
METEOR, ROUGE-L, and CIDEr with just 3 more
epochs and a slightly larger learning rate. This may
indicate that tuning prefix and infix in conjunction
may need more epochs to achieve comparable re-
sults. This is an area for future research to delve
into.

In the third ablation study, we initialized the pre-
fix to “table2text”, following the intuition that task-
specific instructions such as “summarize this table”
provide relevant context to natural language mod-
els. Among our two baselines and four ablations,
prefix initialization achieved the highest accuracy
across METEOR, ROUGE-L, and CIDEr metrics
(Table 8). Figure 8 shows the prefix initializations
the original authors tried. We find that our proposed
prefix initialization of “table2text” outperforms all
previous initializations and shows that even a nu-
merical representation of “to” in “table-to-text” is
able to be incorporated by the model.

In the final ablation study, we attempted to re-
place the existing decoding method, beam search,

Figure 8: Prefix initializations that the original authors
tried.(Li and Liang, 2021)

with nucleus sampling. Our results validated the
author’s selection of the beam search approach as
nucleus sampling did not yield improved results.

Table 8 shows our final results compared with
the state of the art defined by (Li and Liang, 2021).

E2E (prefix)

MET R-L CIDEr
SOTA 46.3 72.1 2.47

Prefix-Only 46.5 71.2 2.52
Infix-Only 46.0 70.5 2.41

Prefix-Length (20) 46.1 71.4 2.47
Prefix + Infix 26.4 50.8 0.932

Nucleus Sampling 41.7 63.5 1.86
Prefix Initialization 48.9 76.1 2.64

Table 8: Results from our ablation studies evaluated on
test set compared to state of the art performance (SOTA
is taken to be the results given by (Li and Liang, 2021))

5 Conclusion and Future Work

In conclusion, we were successful in reproducing
the original author’s table-to-text generation base-
line of GPT-2 on the E2E dataset, and even ex-
ceeded their accuracy using the MET and CIDEr
metrics (see Figure 1). In addition, we proposed
and implemented four new ablations.

As for future work, we would like to explore
alternatives to the GPT-2 baseline model. For ex-
ample, we considered replacing it with XLNet by
Carnegie Mellon University. Proposed as an alter-
native to BERT, XLNet is an autoregressive pre-
training method that is able to capture bidirectional
context. Initial attempts to substitute the underly-
ing model were unsuccessful due to incompatabile
configuration differences between the two models

that required more time to debug and investigate.

6 Code and Reproducibility

In order to maximize reproducability, the
code in this paper is available at https:

//github.com/RichardZhu123/cos484final.
A Codalab from (Li and Liang, 2021)—which
contains additional data and the libraries used in
our implementation—is also available at https:
//worksheets.codalab.org/worksheets/

0x16e0c8e7ab1f4b22aaccddc8b586541f

Acknowledgments

We would like to acknowledge Professor Karthik
Narasimhan, Mengzhou Xia, Ameet Deshpande,
and Lisa Li for all of their help with the project.
We’re also incredibly grateful to both Percy Liang
and Lisa for the insightful paper.

References
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. CoRR,
abs/2005.14165.

Guanzheng Chen, Fangyu Liu, Zaiqiao Meng, and
Shangsong Liang. 2022. Revisiting parameter-
efficient tuning: Are we really there yet? arXiv
preprint arXiv:2202.07962.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. The WebNLG
challenge: Generating text from RDF data. In Pro-
ceedings of the 10th International Conference on
Natural Language Generation, pages 124–133.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation.

Linyong Nan, Dragomir Radev, Rui Zhang, Amrit
Rau, Abhinand Sivaprasad, Chiachun Hsieh, Xiangru
Tang, Aadit Vyas, Neha Verma, Pranav Krishna, et al.
2021. Dart: Open-domain structured data record to

text generation. In Proceedings of the 2021 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 432–447.

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser.
2017a. The e2e dataset: New challenges for end-to-
end generation. In Proceedings of the 18th Annual
SIGdial Meeting on Discourse and Dialogue, pages
201–206.

Jekaterina Novikova, Ondrej Dusek, and Verena Rieser.
2017b. The E2E dataset: New challenges for end-to-
end generation. CoRR, abs/1706.09254.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. Language mod-
els are unsupervised multitask learners.

Sheng Shen, Daniel Fried, Jacob Andreas, and Dan
Klein. 2019. Pragmatically informative text gener-
ation. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4060–4067, Minneapolis, Minnesota. Association for
Computational Linguistics.

https://github.com/RichardZhu123/cos484final
https://github.com/RichardZhu123/cos484final
https://worksheets.codalab.org/worksheets/0x16e0c8e7ab1f4b22aaccddc8b586541f
https://worksheets.codalab.org/worksheets/0x16e0c8e7ab1f4b22aaccddc8b586541f
https://worksheets.codalab.org/worksheets/0x16e0c8e7ab1f4b22aaccddc8b586541f
http://arxiv.org/abs/2005.14165
https://doi.org/10.18653/v1/W17-3518
https://doi.org/10.18653/v1/W17-3518
https://doi.org/10.48550/ARXIV.2101.00190
https://doi.org/10.48550/ARXIV.2101.00190
http://arxiv.org/abs/1706.09254
http://arxiv.org/abs/1706.09254
https://doi.org/10.18653/v1/N19-1410
https://doi.org/10.18653/v1/N19-1410

