
Solving Sudoku Puzzles with Recurrent Neural
Networks

Richard Zhu
Princeton University

ryzhu@princeton.edu

Abstract

Recent advancements in machine learning have allowed for near-human or even
superhuman performance in applications spanning chess-playing [12], protein
folding [5], and natural language generation [2]. Sudoku, a comparatively sim-
pler task, appears to be an interesting problem. The puzzle can be modelled as
a constraint or propositional satisfaction problem (CSP/SAT) which provides the
basis for many backtracking-based solvers with 100% accuracy on 3x3 puzzles.[7]
However, for the general n x n case of the puzzle these algorithms are unproven
and would at best run in exponential time with respect to n. This paper establishes
a new state of the art test accuracy of 65.1% for 3x3 Sudoku puzzle solvers us-
ing a recurrent neural network (RNN) running in polynomial time. The accuracy
is calculated across 10,000 unseen 3x3 Sudoku puzzles of medium difficulty (on
average there are 48 blanks on the puzzle board) and is achieved with a shallow,
bidirectional RNN with long-short term memory (LSTM) recurrent cell.

1

Contents

1 Acknowledgements 3

2 Introduction 4

2.1 Sudoku . 4

2.2 Mathematical Representations . 5

2.3 Recurrent Neural Networks . 6

3 Methods 7

3.1 Architecture . 7

3.2 Data and pre-processing . 7

3.3 Iteration 1: Unidirectional vanilla RNN . 9

3.4 Iteration 2: Unbatched bidirectional vanilla RNN 10

3.5 Iteration 3: Unbatched bidirectional LSTM/GRU 10

3.6 Iteration 4: Batched bidirectional GRU . 11

3.7 Iteration 5: Batched bidirectional LSTM . 12

4 Discussion and Conclusion 12

5 Future Work 14

A Complexity of n-by-n Sudoku and an ML solution 16

A.1 Upper bound on state-space complexity . 16

A.2 Time complexity of an ML approach . 16

B Illustrations of RNN architectures 17

B.1 RNNFC . 17

B.2 BRNNFC . 18

C Illustration of a solve puzzle in the test set 19

2

1 Acknowledgements

I would like to express my immense gratitude to Prof. Danqi Chen for the countless hours spent ad-
vising me on this project and for first teaching me - along with Prof. Sanjeev Arora - the wonders of
machine learning through COS 324. This work is submitted in partial fulfillment of the requirements
of the certificate offered by the Program in Applied and Computational Mathematics at Princeton
University.

3

2 Introduction

Machine learning should, in theory, be able to achieve superhuman accuracy at solving n-by-n Su-
doku puzzles (”the general Sudoku”), where n is the order of the puzzle. After all, aficionados solve
these puzzles by picking up on patterns within the grid space and machine learning excels at pat-
tern recognition. Given recent successes in applying machine learning methods to games like chess
[12] or protein folding [5], Sudoku - a game that is simpler in both rule and state-space complexity
- seems like a good candidate for some sort of deep neural network. Such a model, once trained
would always be capable of solving an n-by-n puzzle in polynomial time, even if each forward step
through the model solved only one additional cell. Research regarding neural network-based solvers
have emerged recently, [10] [1] though most literature on the puzzle seeks to find solvers that can
achieve 100% accuracy, even if they must operate in exponential time.

2.1 Sudoku

An n-by-n Sudoku is a puzzle played on an n2-by-n2 grid. Figure 1 shows a 3-by-3 Sudoku puzzle,
played on a 32-by-32 grid.

Figure 1: Sample 3x3 Sudoku puzzle

The general Sudoku consists of rows (1), columns (2), and blocks (3) as indicated in Figure 2.

Figure 2: Schematic of n-by-n Sudoku puzzle

The rules of the game are as follows:

4

• Rule 1: Each block (indicated by the n-by-n section of Figure 2 labelled by 1, of which
there are n2 such sections) must contain each of the numbers from 1...n2.

• Rule 2: Each column (indicated by the column of n2 cells labelled as section 2) must
contain each of the numbers from 1...n2.

• Rule 3: Each row (indicated by the row of n2 cells labelled as section 3) must contain each
of the numbers from 1...n2.

Each number from 1...n2 appears exactly n2 times in the puzzle and there are a total of n4 cells.

The goal of the puzzle is to fill out values such that rules 1, 2, and 3 (above) are satisfied. A number
of clues are given, in the form of cells already filled-in with the correct value (eg. the numbers in
Figure 1 are the clues), with a minimum of 2n2 − 1 cells must have their values given in order for a
single solution to exist. This paper assumes that the Sudoku puzzles presented to the model have a
single, unique solution.

The various mathematical representations of the puzzle have been well studied and it has been
demonstrated that the general problem is NP-complete [15] through Another Solution Problem
(ASP)-completeness shown by reduction from Latin square completion. However, the question
arises of how we can model the Sudoku puzzles to best serve a neural network solution, codifying
the rules of the game into a set of mathematical constraints. Since existing methods of solving such
puzzles rely primarily on search propagation, this approach is well-tested and has a strong likelihood
of producing sure-fire solutions.

2.2 Mathematical Representations

The Sudoku puzzle is often modelled as either a constraint satisfaction problem (CSP) or a proposi-
tional satisfiability problem (SAT).

The puzzle can be posed as a CSP with 3n2 ALL DIFFERENT () constraints. Let p[y, x] repre-
sent the value of the cell at the y-th row and x-th column (since the puzzle constraints are symmetric
the rows can be enumerated starting from the bottom or the top, as can the columns from the left or
right) of a completed Sudoku puzzle. For instance, if we take the top left corner to be (y, x) = (1, 1),
then p[3, 1]=8. In order for that solution to be valid, the following constraints must be met.

n2 row constraints:

∀i ∈ [1, n2] : ALL DIFFERENT (p[i, 1], p[i, 2], ..., p[i, n2])

n2 column constraints:

∀j ∈ [1, n2] : ALL DIFFERENT (p[1, j], p[1, j], ..., p[n2, j])

n2 block constraints:

∀m,n ∈ [1, n] : ALL DIFFERENT (p[i, j]∀i, j ∈ Dm, Dn)

where D = {[1, n], [n+ 1, 2n], ..., [n(n− 1) + 1, n2]}

The CSP can then be solved using a backtracking solver to perform search in exponential time
complexity [13].

The Sudoku puzzle can also be modelled as a SAT problem. Lynce and Ouaknine 2006 demonstrate
a polynomial-time solution to 3x3 puzzles using unit propagation and the failed literal rule.[7] In
their extended encoding, which achieves 100% accuracy on 24,260 order 3 puzzles, they convert
the puzzle into a SAT problem with the following constraints. For readability, we simplify the 9
constraints proposed by Lynce and Ouaknine into the 5 shown below, which completely constrain
the problem. The following constraints encode the 3 rules mentioned in Section 2.1, where sxyz is
true iff the cell on the xth row and yth column contains the value z (with x and y ranging from 1...n2

and z ranging from 1...n2).

5

There is exactly one number in each entry:

∧9
x=1 ∧9

y=1 (∨9
z=1sxyz ∧ ∧8

z=1 ∧9
i=z+1 (¬sxyz ∨ ¬sxyi)) (1)

Each number appears exactly once in each row:

∧9
y=1 ∧9

z=1 (∧8
x=1 ∧9

i=x+1 (¬sxyz ∨ ¬siyz) ∧ ∨9
x=1sxyz)

However, upon closer introspection we know that if there is exactly one number in each entry and
each number appears at least once in each row, each number must also appear exactly once in
each row. Given equation (1), the above reduces to the extended encoding presented by Lynce
and Ouaknine (which is actually much simpler than the minimal encoding stating that each number
appears at most once in each row, ∧9

y=1 ∧9
z=1 ∧8

x=1 ∧9
i=x+1 (¬sxyz ∨ ¬siyz)).

∧9
y=1 ∧9

z=1 ∨9
x=1sxyz (2)

Each number appears at most once in each column:
Again applying the reasoning used in the constraint represented by equation (2), and given equation
(1), we get the extended encoding in Lynce and Ouaknine.

∧9
x=1 ∧9

z=1 ∨9
y=1sxyz (3)

Each number appears at most once in each 3x3 sub-grid: Given equation (1), the minimal encoding
is,

∧9
z=1 ∧2

i=0 ∧2
j=0 ∧3

x=1 ∧3
y=1 ∧3

k=y+1(¬s(3i+x)(3j+y)z ∨ ¬s(3i+x)(3j+k)z) (4)

∧9
z=1 ∧2

i=0 ∧2
j=0 ∧3

x=1 ∧3
y=1 ∧3

k=y+1 ∧3
l=1 (¬s(3i+x)(3j+y)z ∨ ¬s(3i+k)(3j+k)z). (5)

The full extended encoding (as opposed to the more concise variant of the encoding reproduced
here) is what achieved the group’s high accuracy with the basic encoding producing only . New
research has arisen regarding SAT solvers that rely on neural networks, [14] however to recreate the
SATNet layer would pose additional challenges, including resolving a very large train-test accuracy
differential in Wang et al. 2019’s results, so we attempted instead to indirectly encode the rules
within the model parameters.

2.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) form the underlying architecture necessary to apply modern ma-
chine learning design patterns to variable length inputs. They are defined as multi-layer-capable
neural networks with closed loop feedback, which enables a relatively small number of parameters
(as opposed to a fully-connected layer operating on the same input) to encode relationships across
the entire input sequence. This has enabled significant advances in applications involving prediction
over some form of temporal progression, spanning language models, weather forecasting, music
generation, financial market prediction, and dynamical system evolution. However, RNNs often
struggle to encode higher order relationships and patterns in the way that a convolutional neural
network might. Figure 3 show samples from the first convolutional layer of a deep Convolutional
Neural Network (CNN) on a dataset of hand-written digits. We notice that the activations corre-
spond roughly with the edges of various handwritten numbers and form the ”building blocks” for
recognition of digits.

Recurrent relational networks (RRNs) have seen significant success in solving Sudoku puzzles in an
iterative, multi-step approach. RRNs have solved 96.6% of the hardest Sudoku puzzles. [10]

Machine learning, more broadly, has seen significant advances in achieving accuracy approaching
or exceeding human performance: GPT-3 in the natural language generation realm [2], AlphaZero
in the game-playing arena [12], and AlphaFold in the field of protein structure prediction [5].

The variable-sized input makes it difficult to design the architecture of the RNN with the CSP or
SAT constraints embedded within the architecture directly. Given that the input is read as a sequence
(the Sudoku puzzle is reshaped from an n2 x n2 grid of numbers to a 1 x n4 vector in row-major
order, before being run through one-hot encoding), many of the positional relationships are lost (i.e.
the first and last element of any column are very important, but occur very far apart from each other
in the sequence).

6

Figure 3: Samples from the first convolutional layer of a CNN, after training on the MNIST dataset.
Graphic from [9]

3 Methods

3.1 Architecture

We use three primary RNN cell architectures: vanilla RNN (with simple tanh activation), long-short
term memory (LSTM)[4], and gated recurrent unit (GRU)[3]. While the first is a good baseline, the
latter two were expected to outperform given the explicit features designed to encode long-range
dependencies.

(a) Vanilla RNN cell (b) LSTM cell (c) GRU cell

Figure 4: 2 Figures side by side

Each of the three cells is shown above (LSTM and GRU cell illustrations from [8]), with xt being
the input at time step t (whether from the input sequence or the output from the previous layer),
ht being the value of the hidden vector at time step t, and ct being the value of the memory cell
- a vector representing long-range dependencies used in the LSTM cell. The output of a cell (not
pictured), yt, has the same value as ht.

3.2 Data and pre-processing

A dataset of 1 million 3x3 Sudoku puzzles (with solutions) is used for this report and is available at
https://www.kaggle.com/datasets/bryanpark/sudoku. A sample puzzle/solution
pair is shown in Table 1. There are a few properties of the dataset, as can be noted in the afore-
mentioned table. The data takes the form of an 1x81 vector, with each cell taking on a single value
from 1...9. A 0 in the problem represents a blank cell and there are no 0’s in the solution. We split
this dataset into three segments, with the train set being the first 10,000 entries, the development set
being the second-to-last 10,000, and the test set being the last 10,000. The first two sets are ”seen”
during the training process, meaning that we tweak model parameters and hyperparameters to maxi-
mize accuracy/minimized loss on the train and development sets, respectively. More specifically, the
train set is used for training the model and we perform gradient descent of the RNN on this set. The
development set is used to determine optimal hyperparameters and the test set is used to evaluate the
quality of our model’s predictions.

7

https://www.kaggle.com/datasets/bryanpark/sudoku

Table 1: Sample puzzle/solution pair in the 1 million order 3 puzzle dataset

We perform one-hot encoding (OHE) on each of the sets. We add an extra dimension to the dataset
with a single 1 at the 1-index (an index starting at 1 rather than 0) representing the value of the cell.
For example, take train x to represent the matrix containing all the puzzles in the train set before
encoding and train xenc to represent the same matrix after encoding. If train x[1, 2] = 5, that is
the 2nd element in the 1st example (in 1 x 81 representation) has a value of 5, then train xenc is
constructed such that train xenc[1, 2, 5] = 1, and such that train xenc[1, 2, i] = 0 ∀i|i ̸= 5. The
resulting dimensions of each set, before and after OHE, is indicated in Table 2.

Table 2: Dimensions of puzzle/solution matrices in dataset partitions

The variables in Table 2 are defined as follows:

1. Ntrain: the number of train examples, in this case 10,000

2. Ndev: the number of development examples, in this case 10,000

3. Ntest: the number of test/validation examples, in this case 10,000

4. dpuz: the number of cells in the puzzle, in this case 81

5. n: the order of the puzzle, as defined previously, in this case 3. We note that in general the
value of dpuz is equal to n4, however we keep these as separate variables for clarity.

6. dbatch: the size of the batch. A value of 256 has been found to work particularly well.

We also split each set into batches (ranging from 256-2048 examples per batch) to increase the
complexity of models (i.e. hidden dimension size and number of layers) given limited GPU memory
and to implement mini-batch gradient descent for smoother loss curves (and thus steadier descent to
a loss optimum). This does not add any additional dimensions to the data sets, but rather creates a
list of matrices with number of examples, I , equal to the batch size.

The input to all models noted below is a single batch of one-hot embedded examples (with dimen-
sion dbatch x dpuz x n4). The output is also a single batch of embedded examples with the same
dimesnion. However, the values along the third dimension are not one-hot but rather are real-values
probability-like values, which are subjected to a softmax function that converts these values into
probabilities, summing to 1 along the 3rd axis. These values represent the probability of the 1-index
of that cell (along the third dimension) being the value in the Sudoku puzzle. The index with the
maximal probability is taken to be the prediction, using PyTorch’s max function. This function per-
forms an argmax over the 3rd axis and returns the index. In each of the five iterations we perform
course adjustments of hyperparameters such as hidden dimension, number of layers, and the number
of epochs in search of an optimal architecture.

To measure accuracy, we divide the number of correct cells (cells where the prediction value matches
the gold value) by the number of total cells in the puzzle. We decide not to use F-1 scores or
other metrics, since we care only about maximizing the number of correct values in a multi-class
classification problem.

8

For all models, we use cross entropy loss during training, stochastic descent with Adam optimiza-
tion, and a learning rate scheduler with adjustable decay. We use an initial learning rate of 0.01
throughout this paper and there is no dropout applied during training.

3.3 Iteration 1: Unidirectional vanilla RNN

Experimentation began with a vanilla RNN - an Elman RNN with tanh activation, a 2-layer variant
of which is illustrated in Appendix B.1. Each cell is governed by the following relation, where ht,
xt are defined previously. W is the weight matrix associated with the recurrent cell, and b represents
a bias term. In this case there are two weight matrices and biases, one for the input, x, and one for
the hidden state vector, h.

ht = tanh(Wihxt + bih +Whhh(t−1) + bhh)

We append a single fully-connected layer across the hidden dimension to make a more effective
judgement of the final predicted as a function of the entire hidden state/output. This turns out to be
very effective, and we maintain this fully-connected layer across each iteration of the architecture.
A summary of three top performing model configurations is shown in Table 3. These examples were
chosen because they give a good picture of the progression of test accuracy across hidden dimension,
layer number, and epoch number adjustments. We note that epochs run very quickly at this layer and
hidden dimension size, and large epoch numbers are required for suitable results. This architecture
is named RNN-FC, since it is the vanilla RNN configuration with a fully-connected layer. Numbers
are appended to this abbreviation to distinguish different hyperparameter configurations.

Table 3: Performance of unidirectional vanilla RNN across various hyperparameter ranges (hidden
dimension size, layers, and epochs). Bolded values represent the highest accuracy.

Observing the train-loss progression over epoch number for each of these (see Figure 5, we note
that both RNN-FC1 and RNN-FC2 appear that they could benefit from additional epochs as the
training loss does not appear to have reached steady state. In the RNN-FC3, there appears to be an
anomalous spike which could be explained by the much larger dimension size.

Figure 5: Cross entropy loss versus epoch number during training

9

3.4 Iteration 2: Unbatched bidirectional vanilla RNN

BRNN-FC performances with varying test accuracies are shown in Table 4. We stop measuring
time taken to run accuracy tests due to the similarity in numbers once accuracy calculations are
vectorized. We notice interestingly that the network with the most parameters performs worst.

Table 4: Performance of bidirectional vanilla RNN.

The loss of each model during training is shown in Figure 6. Of note is the significant volatility in
the BRNN-FC2 training process.

Figure 6: Cross entropy loss versus epoch number during training

3.5 Iteration 3: Unbatched bidirectional LSTM/GRU

Vanilla RNN cells ”forget” information occurring at timesteps far away from the current one. How-
ever, LSTM and GRU models have the capacity to delete unused and keep important data using
hidden state and memory cell vectors. Input, forget, reset, update, and output gates handle the writ-
ing and reading of information to this memory. The top performing GRU and LSTM models are
compared to the current BRNN-FC in Table 5.

Table 5: Performance of bidirectional LSTM and GRU vs. vanilla RNN.

10

The loss of each model during training is shown in Figure 7. The LSTM and GRU losses have not yet
stabilized and training for additional epochs could further improve test accuracy. the bidirectional
RNN continues to outperform the LSTM and GRU models, though this may be due to the additional
layer in the former.

Figure 7: Cross entropy loss versus epoch number during training

3.6 Iteration 4: Batched bidirectional GRU

Investigating various architectures for a GRU-based RNN, the model appears to reach a substantially
smaller loss upon batching (2/3 reduction). There is a marked improvement in train accuracy by
adding the additional layer, reinforcing the theory presented in the previous iteration. However
the overfitting outpaces that of the bidirectional BRNN-FC3 and test accuracy lags behind that of
BRNN-FC3. A subset of batched bidirectional GRU trials are shown in Figure 6.

Table 6: Performance of bidirectional GRU vs. vanilla RNN.

The loss of each model during training is shown in Figure 8.

Figure 8: Cross entropy loss versus epoch number during training

11

Surprisingly, the BRNN-FC3 despite having the highest accuracy appears to have plenty of room
for improvement, compared to the BGRU-FC1 and -2 plots which appear to have stabilized around
1 and 0.29 train loss respectively.

3.7 Iteration 5: Batched bidirectional LSTM

LSTM model performance is shown in Figure 7. Running a few different variants gives increasingly
strong results. It appears that there is a delicate balance across learning-rate decay adjustments
(strong effect on terminal loss). It also appears that RNN’s that are too deep are hard to train, which
results in lower test accuracies and more overfitting.

Table 7: Performance of bidirectional LSTM.

The loss of each model during training is shown in Figure 9. However, while BLSTM-FC2 and -3
stabilize around 0.81 and 0.34 training loss, BLSTM-FC1 appears to have much more potential for
decreasing loss.

Figure 9: Cross entropy loss versus epoch number during training

4 Discussion and Conclusion

Iteration 1 has a particularly low test accuracy in RNN-FC3 of 11.10% which is about the same as
randomly guessing values. Given that across all 1 million puzzles in the dataset, 41% of the grid is
filled out already, we would expect an RNN to achieve at least this score at minimum. All the RNN
would have to do is learn that any non-zero values in the puzzle corresponded directly to values in
the solution. Though this does appear to be a somewhat non-trivial task, our RNN. We expect a poor
score due in large part to the unidirectional layer of the RNN. Since predictions for the first few cells
are generated without ”seeing” the input cells later in the sequence, despite having strong conditional
dependence on those values (i.e. the first value in a column is highly dependent on the last value
in that column), we expect the RNN to be effectively guessing at random large parts of the puzzle,
especially towards the upper left corner of the puzzle. RNN-FC3 likely achieves a low accuracy
and high training loss due to the size of the model, and low number of epoch trained. However, the

12

training loss plateaued, meaning that additional epochs did not have a significant effect on terminal
training loss. Looking at the confusion matrix (Figure 10), RNN-FC3 is essentially only predicting
2’s, 4’s, and 6’s, which concurs with our hypothesis.

Figure 10: Confusion matrix across prediction-actual pairs in RNN-FC3

Iterations 2-5 contain various iterative approaches to improving the score through manipulating the
underlying architecture. Intuitively, the under-performance by the GRU relative to the LSTM cell
is justified since the latter has an explicit cell state vector for long-term memory in addition to the
hidden state vector.

The confusion matrix in Figure 11 shows the final % occurences of each prediction-actual pair in
the model that had the highest test accuracy overall. The correct pairs occur an order of magnitude
more often than individual wrong pairs, however there is still much work to do.

Figure 11: Confusion matrix across prediction-actual pairs in top performing BRNN-FC model

We establish a new state of the art with 65.06% accuracy on the ”1 Million Sudoku Puzzle” dataset.
Others have achieved training accuracy of 46.7% on similar 3x3 Sudoku puzzles with 46-49 blanks
in each puzzle - very close to the average 48 blanks in our dataset, however the test dataset consisted
of only 100 puzzle-solution pairs. [1]

The code used in this paper can be found at https://github.com/RichardZhu123/
independent_work

13

https://github.com/RichardZhu123/independent_work
https://github.com/RichardZhu123/independent_work

5 Future Work

In the future, we could consider a customized RNN cell, additional experiments on the effect of
number of layers/hidden dimension, and the effect of accuracy on training size for various dimen-
sions. Next steps may also include performing additional experiments with more complex architec-
tures (such as the RRN) as opposed to merely tuning hyperparameters. Though there was reasoning
behind the number of layers chosen (each layer encodes a different level of relationship) and the
minimum hidden dimension size used (dimension of at least n4), there could have been a more
mathematical justification for these values. The use of skip connections may also be investigated to
improve predictions on multi-layered neural networks.

Although we attempted to directly run the RNN on the CSP and SAT problem, we were unable to
find a suitable way to configure the RNN (specifically our top-performing architecture, the LSTM)
model to solve this problem in polynomial time.

14

References

[1] Charles Akin-David and Richard Mantey. Solving sudoku with neural networks. Stanford
University - CS230, 2018.

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, and et al. Language models are few-
shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 1877–1901. Curran
Associates, Inc., 2020.

[3] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–
decoder for statistical machine translation. In Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP), pages 1724–1734, Doha, Qatar,
October 2014. Association for Computational Linguistics.

[4] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735–1780, 1997.

[5] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, and et al.
Highly accurate protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

[6] Stan Kelly-Bootle. Anything su doku, i can do better: The new puzzle craze from japan is
sweeping the world, and testing our boolean logic. Queue, 3(10):56–ff, dec 2005.

[7] Inˆes Lynce and Jo¨el Ouaknine. Sudoku as a sat problem. International Symposium on
Artificial Intelligence and Mathematics, 9, Jan 2006.

[8] Karthik Narasimhan. L11: Recurrent neural networks (ii), Jan 2022.
[9] Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks, 2015.

[10] Rasmus Berg Palm, Ulrich Paquet, and Ole Winther. Recurrent relational networks for complex
relational reasoning. CoRR, abs/1711.08028, 2017.

[11] Haşim Sak, Andrew Senior, and Françoise Beaufays. Long short-term memory recurrent neural
network architectures for large scale acoustic modeling. Interspeech 2014, 2014.

[12] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, and et al. Mastering chess and shogi
by self-play with a general reinforcement learning algorithm. CoRR, abs/1712.01815, 2017.

[13] Milos Simic. How to solve constraint satisfaction problems, Feb 2022.
[14] Po-Wei Wang, Priya L. Donti, Bryan Wilder, and J. Zico Kolter. Satnet: Bridging deep learning

and logical reasoning using a differentiable satisfiability solver. CoRR, abs/1905.12149, 2019.
[15] Takayuki Yato. Complexity and completeness of finding another solution and its application

to puzzles. University of Tokyo Graduate School of Science, 9, Jan 2003.

15

A Complexity of n-by-n Sudoku and an ML solution

A.1 Upper bound on state-space complexity

The generalized n-by-n Sudoku puzzle (see Figure 12) is an NP-complete problem [15] with an
upper limit of (n2!)n

2−1 on the number of possible board configurations, including illegal ones.
This is a tighter bound than the value proposed by Kelly-Bootle in the Association for Computing
Machinery (ACM)’s Queue journal of (n2!)n

2

[6]. Our value was calculated as the product of the
number of potential configurations in each column. The first column has n2! possible configurations
since the first cell can take on n2 possible values. The second cell in that column can only take on
any of the values 1...n2 except for the value of the first cell, so it can only take on (n2 − 1) values.
We know that for the cells in the last column, there will only be one possible value such that each
row contains the numbers 1...n2. Thus, we only care about the first n2 − 1 columns and determine
the upper limit of (n2!)n

2−1.

Figure 12: A generic n-by-n Sudoku puzzle

A.2 Time complexity of an ML approach

The time complexity of training an LSTM model on a single example is O(n2) [11], which can be
generalized to a vanilla RNN and GRU given the identical underlying architecture - differing only in
the RNN cell structure. We assume that the number of training examples required for high accuracy
follows a power law dependency on n, that is αnβ . This means that training takes O(nβ+2) time.

A single layer of a recurrent neural network architecture takes O(n4) operations and as we add addi-
tional forward/backward layers the time complexity scales by a constant. Thus, the time complexity
at inference (a full forward pass getting us from an input puzzle to a solution output) will also be
O(n4)

Thus, the time complexity for recurrent neural networks (including vanilla, LSTM, and GRU) for
both training and inference is {

O(n4) β ≤ 2

O(nβ+2) β > 2

which is polynomial time in the dimension of the puzzle, regardless of the value of β.

16

B Illustrations of RNN architectures

B.1 RNNFC

Figure 13: Schematic of uni-directional RNN with fully-connected layer, with 2 layers

17

B.2 BRNNFC

Figure 14: Schematic of bi-directional RNN with fully-connected layer, with 2 layers

18

C Illustration of a solve puzzle in the test set

Figure 15: Example of a puzzle solved by a BRNN-FC

19

	Acknowledgements
	Introduction
	Sudoku
	Mathematical Representations
	Recurrent Neural Networks

	Methods
	Architecture
	Data and pre-processing
	Iteration 1: Unidirectional vanilla RNN
	Iteration 2: Unbatched bidirectional vanilla RNN
	Iteration 3: Unbatched bidirectional LSTM/GRU
	Iteration 4: Batched bidirectional GRU
	Iteration 5: Batched bidirectional LSTM

	Discussion and Conclusion
	Future Work
	Complexity of n-by-n Sudoku and an ML solution
	Upper bound on state-space complexity
	Time complexity of an ML approach

	Illustrations of RNN architectures
	RNNFC
	BRNNFC

	Illustration of a solve puzzle in the test set

